Efficiently from Semi-honest to Malicious OT via OLFE

نویسنده

  • Jürg Wullschleger
چکیده

A combiner securely implements a functionality out of a set implementations of another functionality from which some may be insecure. We present two efficient combiners for oblivious linear function evaluation (OLFE). The first is a constant-rate OLFE combiner in the semihonest model, the second combiner implements Rabin string oblivious transfer (RabinOT) from OLFE in the malicious model. As an application, we show a very efficient reductions in the malicious model of RabinOT over strings to one-out-of-two oblivious transfer over bits (OT) that is only secure in the semihonest model. For string of size ` = ω(k), our reductions uses only 4`+ o(`) instances of OT, while previous results required Ω(`k). Our new reduction leads to an efficiency improvement for general multi-party computation (MPC) based on semi-honest OT, and makes it almost as efficient as MPC based on malicious OT. All reductions are unconditionally secure, black-box, universally composable and secure against adaptive adversaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-Round MPC from k-Round OT via Garbled Interactive Circuits

We present new constructions of round-efficient, or even round-optimal, MultiParty Computation (MPC) protocols from Oblivious Transfer (OT) protocols. Our constructions establish a tight connection between MPC and OT: In the setting of semi-honest security, for any k ≥ 2, k-round semi-honest OT is necessary and complete for k-round semi-honest MPC. In the round-optimal case of k = 2, we obtain ...

متن کامل

OT-Combiners via Secure Computation

An OT-combiner implements a secure oblivious transfer (OT) protocol using oracle access to n OT-candidates of which at most t may be faulty. We introduce a new general approach for combining OTs by making a simple and modular use of protocols for secure computation. Specifically, we obtain an OT-combiner from any instantiation of the following two ingredients: (1) a t-secure n-party protocol fo...

متن کامل

Distributed Privacy Preserving Information Sharing

In this paper, we address issues related to sharing information in a distributed system consisting of autonomous entities, each of which holds a private database. Semi-honest behavior has been widely adopted as the model for adversarial threats. However, it substantially underestimates the capability of adversaries in reality. In this paper, we consider a threat space containing more powerful a...

متن کامل

A Unified Framework for UC from Only OT

In [1], the authors presented a unified framework for constructing Universally Composable (UC) secure computation protocols, assuming only enhanced trapdoor permutations. In this work, we weaken the hardness assumption underlying the unified framework to only the existence of a stand-alone secure semi-honest Oblivious Transfer (OT) protocol. The new framwork directly implies new and improved UC...

متن کامل

Two-Round Multiparty Secure Computation from Minimal Assumptions

We provide new two-round multiparty secure computation (MPC) protocols assuming the minimal assumption that two-round oblivious transfer (OT) exists. If the assumed two-round OT protocol is secure against semi-honest adversaries (in the plain model) then so is our tworound MPC protocol. Similarly, if the assumed two-round OT protocol is secure against malicious adversaries (in the common random...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009